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The nonlinear ac response of the magnetization M�t� of a uniaxially anisotropic superparamagnetic nano-
particle subjected to both ac and dc bias magnetic fields of arbitrary strengths and orientations is determined by
averaging Gilbert’s equation augmented by a random field with Gaussian white-noise properties in order to
calculate exactly the relevant statistical averages. It is shown that the magnetization dynamics of the uniaxial
particle driven by a strong ac field applied at an angle to the easy axis of the particle �so that the axial
symmetry is broken� alters drastically leading to different nonlinear effects due to coupling of the thermally
activated magnetization reversal mode with the precessional modes of M�t� via the driving ac field.
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Fine ferromagnetic particles are characterized by thermal
instability of their magnetization M�t� resulting in spontane-
ous change in their orientation from one metastable state to
another by surmounting energy barriers, giving rise to super-
paramagnetism which is very important in information stor-
age and rock magnetism as well as in biomedical
applications.1,2 Due to the large magnitude of the magnetic
dipole moment ��104–105 �B� giving rise to a relatively
large Zeeman energy even in moderate external magnetic
fields, the magnetization reversal process has a strong-field
dependence causing nonlinear effects in the dynamic suscep-
tibility and field-induced birefringence,2,3 stochastic
resonance,4–6 dynamic hysteresis,7,8 etc. However, nonlinear
response to an external field represents an extremely difficult
task even for dilute systems because it always depends on
the precise nature of the stimulus. Thus no unique response
function valid for all stimuli exists unlike in linear response.9

The nonlinear magnetic response of an individual super-
paramagnetic nanoparticle in the presence of the thermal agi-
tation can be evaluated2,3,9 by calculating the relevant statis-
tical averages from Gilbert’s �or Landau-Lifshitz� equation
augmented by a random field h�t� with Gaussian white-noise
properties, accounting for thermal fluctuations of M�t� due to
the heat bath, viz.,10

�tM�t� = ��M�t� � �− �MV�t� − �Ṁ�t� + h�t��� . �1�

Here � is the gyromagnetic ratio, � is the damping param-
eter, and V�M , t� is the free energy per unit volume. This is
made up of the nonseparable Hamiltonian of the magnetic
anisotropy U�M� and Zeeman energy densities, the latter
arising from external magnetic dc and ac fields
H0+H cos �t of arbitrary strengths and orientations. Now
the nonlinear ac stationary response has hitherto been calcu-
lated for uniaxial superparamagnets either �i� by assuming
the energy of a particle in external fields is much less than
the thermal energy kT so that the response may be evaluated
via perturbation theory �e.g., Refs. 3 and 11� or �ii� by as-
suming that strong external fields are directed along the easy
axis of the particle so that axial symmetry is preserved �e.g.,
Refs. 2 and 12�. Thus the results are very restricted. In par-
ticular, the conventional assumption of axial symmetry is

hardly realizable in nanoparticle systems under experimental
conditions because the easy axes of the particles are
randomly oriented in space. Furthermore, many interesting
nonlinear phenomena �such as damping dependence of
the response and interplay between precession and
thermoactivation3� cannot be included because in axial sym-
metry no dynamical coupling between the longitudinal and
transverse �or precessional� modes of motion exists. In con-
trast, discarding the above assumptions we shall now present
an exact nonperturbative method for the nonlinear magneti-
zation relaxation of superparamagnetic particles with an
arbitrary anisotropy potential U in a strong ac driving field
superimposed on a strong dc bias field of arbitrary orienta-
tions. Moreover, taking as example uniaxial superparamag-
nets, we shall demonstrate that for arbitrary orientations of ac
and dc bias fields �so breaking the axial symmetry�, the mag-
netization dynamics changes substantially leading to differ-
ent nonlinear effects which cannot be treated via perturbation
theory. We remark in passing that nonlinear effects in relax-
ation processes of superparamagnetic nanoparticles are
closely related to those in nonlinear dielectric relaxation and
the dynamic Kerr effect in molecular liquids and liquid
crystals,11,13 harmonic mixing in a cosine potential,14 the
nonlinear impedance of Josephson junctions,15 ac-driven vor-
tices in superconductors,16 etc. Thus our approach can also
be applied to nonlinear effects in these.

When the magnitude of the ac field H�t� is so large that
the Zeeman energy of a particle is comparable to or higher
than kT, one is faced with an intrinsically nonlinear problem
which of course cannot be treated by perturbation theory and
which we solve as follows. First we transform the stochastic
Gilbert Eq. �1� to an infinite hierarchy of stochastic
differential-recurrence relations which on averaging over
their realizations using the properties of white noise yield
differential-recurrence relations for the statistical moments
�Yl,m	�t� �the expectation values of the spherical harmonics
Yl,m�, viz.,9,17

�N�t�Yl,m	�t� = 

s,r

el,m,l+r,m+s�t��Yl+r,m+s	�t� , �2�

where �N=�0��+�−1�, �=��Ms is a dimensionless damping
constant, �0=	MS / �2�� is the free-rotational diffusion time
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of M�t�, MS is the saturation magnetization, 	=v / �kT�, and
v is the volume of the particle. Equation �2� was derived in
Ref. 16 and we may now solve it exactly as follows.

By introducing column vectors cn�t� �n=1,2 ,3 , . . .� with
c0= �Y00	=1 /�4
, which are formed from the statistical mo-
ments cl,m�t�= �Yl,m	�t�, Eq. �2� becomes the matrix recur-
rence equation

�N�tcn�t� = qn
−cn−1�t� + qncn�t� + qn

+cn+1�t�

+ �pn
−cn−1�t� + pncn�t� + pn

+cn+1�t���ei�t + e−i�t� ,

�3�

where the supermatrices qn ,qn
� and pn ,pn

� are generated
from the coefficients el,m,l+r,m+s�t�. We remark in passing that
the explicit form of the vectors cn�t� depends on the type of
the free-energy density V�� ,
�; for uniaxial superparamag-
nets, cn�t� are given by Eq. �7� below. Since we are solely
concerned with the stationary ac response, which is indepen-
dent of the initial conditions, we require the steady-state so-
lution of Eq. �3� only. In the steady-state response, symmetry
under time translation is retained under the discrete time
transformation t→ t+2
 /�. Thus we may seek all the cn�t�
in the form of the time Fourier series cn�t�=
k=−�

� cn
k���eik�t.

On substituting this series into Eq. �3�, we have the recur-
rence relations for the Fourier amplitudes cn

k���, namely,

qn
k�k��cn

k��� + qn
+cn+1

k ��� + qn
−cn−1

k ���

+ pn
−�cn−1

k−1��� + cn−1
k+1���� + pn�cn

k−1��� + cn
k+1����

+ pn
+�cn+1

k−1��� + cn+1
k+1���� = 0, �4�

where qn�k��=−ik�N�I+qn and I is the identity matrix.
Now Eq. �4� can be transformed into the matrix recurrence
relations

Q1C1 + Q1
+C2 = R ,

Qn
−Cn−1 + QnCn + Qn

+Cn+1 = 0 �n � 1� , �5�

where the column vectors R and Cn and the tridiagonal su-
permatrices Qn and Qn

� are defined as

Cn��� =�
]

cn
−2���

cn
−1���

cn
0���

cn
1���

cn
2���
]


, R =
− 1
�4
�

]

0

p1
−

q1
−

p1
−

0

]


 ,

�Qn�l,m = �l−1,mpn + �l,mqn�m�� + �l+1,mpn,

�Qn
��l,m = �l−1,mpn

� + �l,mqn
� + �l+1,mpn

�.

The exact solution of Eq. �5� for C1 can be now given
using matrix continued fractions, viz.,

C1 = S1 · R , �6�

where the matrix continued fraction S1 is defined by the re-
currence equation

Sn = − �Qn + Qn
+Sn+1Qn+1

− �−1.

The vector C1 contains all the Fourier amplitudes required
for the nonlinear stationary response. We emphasize that so
far our matrix continued fraction solution, Eq. �6�, is valid
for an arbitrary anisotropy potential U.

Next we shall apply the above general method to the par-
ticular case of uniaxial superparamagnets subjected to the ac
and dc bias ac fields H0+H cos �t applied in arbitrary direc-
tions, where the free energy can be written in dimensionless
form as

	V = � sin2 �

− �0��1 sin � cos 
 + �2 sin � sin 
 + �3 cos ��

− � cos �t��1� sin � cos 
 + �2� sin � sin 
 + �3� cos �� .

Here �1 ,�2 ,�3 and �1� ,�2� ,�3� are the direction cosines of the
vectors H0 and H, respectively, K is the anisotropy constant,
�=	K, �0=	H0MS, and �=	HMS. Now the vectors cn�t�
and the supermatrices qn ,qn

� and pn ,pn
� are given by

cn�t� =�
�Y2n,−2n	�t�

]

�Y2n,2n	�t�
�Y2n−1,−2n+1	�t�

]

�Y2n−1,2n−1	�t�

 ,

pn
− = � o o

b2n−1 o
�, pn = � a2n b2n

d2n−1 a2n−1
� ,

pn
+ = �o d2n

o o
�, qn

− = � V2n o

W2n−1 V2n−1
� ,

qn
+ = �Z2n Y2n

o Z2n−1
�, qn = � X2n W2n

Y2n−1 X2n−1
� . �7�

Here o and 0 are zero matrices and vectors of appropriate
dimensions, respectively. The tridiagonal submatrices
al, bl, and dl have the dimensions �2l+1�� �2l+1�,
�2l+1�� �2l+3�, and �2l+1�� �2l−1�, respectively. Their
matrix elements are given by

�al�n,m = �n−1,mal,−l+m
− + �n,mal,−l+m−1 + �n+1,mal,−l+m−2

+ ,

�bl�n,m = �n,mbl,−l+m−1
− + �n+1,mbl,−l+m−2 + �n+2,mbl,−l+m−3

+ ,

�dl�n,m = �n−2,mdl,−l+m+1
− + �n−1,mdl,−l+m + �n,mdl,−l+m−1

+ ,

where

an,m = − i
m��3�

4�
, bn,m = −

��3�n

4
� �n + 1�2 − m2

�2n + 1��2n + 3�
,
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an,m
+ = − i

���1� − i�2��
8�

��n + m + 1��n − m� ,

bn,m
+ =

���1� − i�2��n
8

��n + m + 1��n + m + 2�
�2n + 1��2n + 3�

,

dn,m =
��3��n + 1�

4
� n2 − m2

�2n + 1��2n − 1�
,

dn,m
+ =

���1� − i�2���n + 1�
8

��n − m��n − m − 1�
�2n + 1��2n − 1�

an,m
− =−�an,−m

+ ��, bn,m
− =−�bn,−m

+ ��, and dn,m
− =−�dn,−m

+ ��. The ma-
trices qn ,qn

� consist of the five submatrices Vl, Wl, Xl, Yl,
and Zl �they also appear in the linear response and are de-
fined explicitly, e.g., in Ref. 9, Chap. 9�. Having determined
the amplitudes cl,m

k ��� from Eq. �6�, we can evaluate the
magnetization MH�t�=vMS
k=1

� Re�m1
k���eik�t�, where

m1
k��� = 4�


3 ��3�c10
k ���

+
��1� + i�2��c1−1

k ��� − ��1� − i�2��c11
k ���

�2
� . �8�

Here we shall assume from now on that the vectors H0 and
H are parallel and they lie in the XZ plane of the laboratory
coordinate system so that �1=�1�=sin �, �2=�2�=0, and
�3=�3�=cos �, where � is the angle between H0 and the Z
axis is taken as the easy axis of the particle. For nonparallel
ac and dc fields, results will be presented elsewhere.

For a weak ac field, �→0, �1
1���=3m1

1��� /� defines the
normalized linear dynamic susceptibility and our results
agree in all respects with the benchmark linear-response
solution.18 The plots of the magnetic loss spectrum
−Im��1

1���� vs ��N are shown in Fig. 1. Here the low-
frequency behavior of �1

1��� can be described by a single
Lorentzian, viz.,

�1
1���

�1
1�0�

�
1 − �

1 + i��
+ � , �9�

where � is the longest relaxation time in the absence of an ac
external field and � is a parameter �here � is associated with
the reversal time of the magnetization;19 simple analytic
equations for � and � are given in Refs. 9 and 20�. Equation
�9� is also plotted in Fig. 1. Now � is related to the charac-
teristic frequency �max, where −Im��1

1���� reaches a maxi-
mum, and/or the half-width �� of Re��1

1���� of the Lorent-
zian as

� � �max
−1 � ��−1. �10�

For zero dc bias field, �0=0, � is independent of the angle �
while in a strong dc field, e.g., for �0=3, � substantially
depends on � �Fig. 1�b��. In addition, a far weaker second
relaxation peak appears at high frequencies. This relaxation
band is due to the “intrawell” modes which are virtually
indistinguishable in the frequency spectrum appearing as a

single high-frequency Lorentzian band. The third or ferro-
magnetic resonance �FMR� peak �due to excitation of trans-
verse modes with frequencies close to the precession fre-
quency �pr of the magnetization� appears only at low
damping and strongly manifest itself at high frequencies.
Moreover, for �=0, when the axial symmetry is restored, the
FMR peak disappears �curves 1 in Fig. 1�a�� because the
transverse modes no longer take part in the relaxation pro-
cess so that this peak is a signature of the symmetry-breaking
action of the applied field.

In strong ac fields, ��1, pronounced nonlinear effects
occur �see Fig. 2�. In particular, the low-frequency band of
−Im��1

1���� can no longer be approximated by a single
Lorentzian. Nevertheless, Eq. �10� may still be used in order
to estimate an effective reversal time of the magnetization �.
�We remark that � may also be evaluated from the spectra of
the higher order harmonics12 because the low-frequency
parts of their spectra are also dominated by the magnetiza-
tion reversal�. The behavior of �max �and, hence, �� as func-
tions of the ac field amplitude depends on whether or not a
dc field is applied. For a strong dc bias, �0�1, the low-
frequency peak shifts to lower frequencies reaching a maxi-
mum at ���0 thereafter decreasing exponentially with in-
creasing �. In other words, as the dc field increases, the
reversal time of the magnetization initially increases and
then having attained its maximum at some critical value
���0 decreases exponentially �see Fig. 2�. For weak dc bias
0��0�1, the low-frequency peak shifts monotonically to
higher frequencies. As seen in Fig. 2�a�, as the ac field am-
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plitude increases, the FMR peak decreases and also broadens
showing pronounced nonlinear saturation effects characteris-
tic for a soft spring. This effect is very similar to that already
known in atomic and molecular spectroscopy.21 Thus we see
that the intrinsic damping dependence of the ac nonlinear
response for the oblique field configuration �see Fig. 2�b��
serves as a signature of the coupling between the longitudi-
nal and precessional modes of the magnetization. Hence, it
should be possible to determine the damping coefficient �
from measurements of nonlinear response characteristics,2

e.g., by fitting the theory to the experimental dependence of
�1

1��� on the angle � and the ac and dc bias field strengths,
so that the sole fitting parameter is �, which can be deter-
mined at different temperatures T, yielding its temperature
dependence. This is important because a knowledge of � and
its T dependence allows for the separation of the various
relaxation mechanisms.9

We now estimate the parameter range, where the nonlin-
ear effects appear. For cobalt nanoparticles with mean diam-
eter a�10 nm and saturation magnetization MS�1460 G,
the field parameter � for T�30 K is on the order of unity for
H�6 kT / �
a3MS��5 Oe. Furthermore, an ac field of this
order of magnitude is easily attained in measurements of the
nonlinear response of magnetic nanoparticles; e.g., Bitoh et
al.22 have measured the nonlinear susceptibility of cobalt
nanoparticles in the temperature range 4.2–280 K using an ac
magnetic field �5–30 Oe. As far the characteristic time �N
is concerned, for ��2�107 rad /Oe s and ��0.1, we have
at room temperature �N�10−8 s.

To conclude we have developed a nonperturbative ap-
proach in terms of matrix continued fractions for the nonlin-
ear relaxation of a uniaxial superparamagnetic particle for
arbitrary strengths and orientations of the dc bias and ac
driving fields. We have shown that the nonlinear ac station-
ary response to a strong ac field applied at an angle to the
easy axis of the particle �so that the axial symmetry is bro-

ken� is very sensitive to both the ac field orientation and
amplitude owing to the coupling induced by the symmetry
breaking driving field between the precession of the magne-
tization and its thermally activate reversal over the saddle
point. In particular, the pronounced damping and ac field
dependence of the nonlinear response �1

1��� can be used to
determine the damping coefficient � just as for higher har-
monic responses.3 We emphasize that these nonlinear effects
in �1

1��� cannot be treated via perturbation theory. Our cal-
culations, since they are valid for ac fields of arbitrary
strengths and orientations, allow one both to predict and in-
terpret quantitatively nonlinear phenomena in magnetic
nanoparticles such as nonlinear magnetic susceptibility, non-
linear stochastic resonance and dynamic hysteresis, nonlinear
ac field effects on the switching field curves, etc., where
perturbation theory and the assumption that axial symmetry
is preserved are no longer valid �these results will be pub-
lished elsewhere�. For practical applications �e.g., in mag-
netic nanoparticle hyperthermia1�, in order to account for the
polydispersity of the particles of a real sample and the fact
the easy axes of particles are randomly distributed in space,
one must also average the nonlinear response functions
m1

k��� over appropriate distribution functions2 �averaging of
m1

k��� over particle volumes and orientations can be readily
accomplished numerically using Gaussian quadraturs23�.
Here, only uniaxial superparamagnetic particles have been
treated. Particles with nonaxially symmetric anisotropies �cu-
bic, biaxial, etc.� can be considered in like manner. Finally,
our results can be adapted to other nonlinear phenomena
such as nonlinear dielectric relaxation and the dynamic Kerr
effect in molecular liquids and liquid crystals.11,13
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